Documentation for Datapoison Module¶
This module provides classes for data poisoning attacks in datasets, allowing for the simulation of data poisoning by adding noise or modifying specific data points.
Classes: - SamplePoisoningAttack: Main attack class that implements the DatasetAttack interface - DataPoisoningStrategy: Abstract base class for poisoning strategies - TargetedSamplePoisoningStrategy: Implementation for targeted poisoning (X pattern) - NonTargetedSamplePoisoningStrategy: Implementation for non-targeted poisoning (noise-based)
DataPoisoningStrategy
¶
Bases: ABC
Abstract base class for poisoning strategies.
Source code in nebula/addons/attacks/dataset/datapoison.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
poison_data(dataset, indices, poisoned_percent, poisoned_noise_percent)
abstractmethod
¶
Abstract method to poison data in the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
The dataset to modify |
required | |
indices
|
list[int]
|
List of indices to consider for poisoning |
required |
poisoned_percent
|
float
|
Percentage of data to poison (0-100) |
required |
poisoned_noise_percent
|
float
|
Percentage of noise to apply (0-100) |
required |
Returns:
Type | Description |
---|---|
Dataset
|
Modified dataset with poisoned data |
Source code in nebula/addons/attacks/dataset/datapoison.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
NonTargetedSamplePoisoningStrategy
¶
Bases: DataPoisoningStrategy
Implementation of non-targeted poisoning strategy using noise.
Source code in nebula/addons/attacks/dataset/datapoison.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
__init__(noise_type)
¶
Initialize non-targeted poisoning strategy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
noise_type
|
str
|
Type of noise to apply (salt, gaussian, s&p, nlp_rawdata) |
required |
Source code in nebula/addons/attacks/dataset/datapoison.py
94 95 96 97 98 99 100 101 |
|
apply_noise(t, poisoned_noise_percent)
¶
Applies noise to a tensor based on the specified noise type and poisoning percentage.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t
|
Tensor | Image
|
The input tensor or PIL Image to which noise will be applied |
required |
poisoned_noise_percent
|
float
|
The percentage of noise to be applied (0-100) |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The tensor with noise applied |
Source code in nebula/addons/attacks/dataset/datapoison.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
poison_data(dataset, indices, poisoned_percent, poisoned_noise_percent)
¶
Applies noise-based poisoning to the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
The dataset to modify |
required | |
indices
|
list[int]
|
List of indices to consider for poisoning |
required |
poisoned_percent
|
float
|
Percentage of data to poison (0-100) |
required |
poisoned_noise_percent
|
float
|
Percentage of noise to apply (0-100) |
required |
Returns:
Type | Description |
---|---|
Dataset
|
Modified dataset with poisoned data |
Source code in nebula/addons/attacks/dataset/datapoison.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
poison_to_nlp_rawdata(text_data, poisoned_ratio)
¶
Poisons NLP data by setting word vectors to zero with a given probability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text_data
|
list
|
List of word vectors |
required |
poisoned_ratio
|
float
|
Fraction of non-zero vectors to set to zero |
required |
Returns:
Type | Description |
---|---|
list
|
Modified text data with some word vectors set to zero |
Source code in nebula/addons/attacks/dataset/datapoison.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
SamplePoisoningAttack
¶
Bases: DatasetAttack
Implements a data poisoning attack on a training dataset.
Source code in nebula/addons/attacks/dataset/datapoison.py
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
|
__init__(engine, attack_params)
¶
Initialize the sample poisoning attack.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
engine
|
The engine managing the attack context |
required | |
attack_params
|
Dict
|
Dictionary containing attack parameters |
required |
Source code in nebula/addons/attacks/dataset/datapoison.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
get_malicious_dataset()
¶
Creates a malicious dataset by poisoning selected data points.
Returns:
Name | Type | Description |
---|---|---|
Dataset |
The modified dataset with poisoned data |
Source code in nebula/addons/attacks/dataset/datapoison.py
347 348 349 350 351 352 353 354 355 356 357 358 359 |
|
TargetedSamplePoisoningStrategy
¶
Bases: DataPoisoningStrategy
Implementation of targeted poisoning strategy using X pattern.
Source code in nebula/addons/attacks/dataset/datapoison.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
__init__(target_label)
¶
Initialize targeted poisoning strategy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_label
|
int
|
The label to target for poisoning |
required |
Source code in nebula/addons/attacks/dataset/datapoison.py
215 216 217 218 219 220 221 222 |
|
add_x_to_image(img)
¶
Adds a 10x10 pixel 'X' mark to the top-left corner of an image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img
|
Tensor | Image
|
Input image tensor or PIL Image |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Modified image with X pattern |
Source code in nebula/addons/attacks/dataset/datapoison.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
poison_data(dataset, indices, poisoned_percent, poisoned_noise_percent)
¶
Applies X-pattern poisoning to targeted samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
The dataset to modify |
required | |
indices
|
list[int]
|
List of indices to consider for poisoning |
required |
poisoned_percent
|
float
|
Not used in targeted poisoning |
required |
poisoned_noise_percent
|
float
|
Not used in targeted poisoning |
required |
Returns:
Type | Description |
---|---|
Dataset
|
Modified dataset with poisoned data |
Source code in nebula/addons/attacks/dataset/datapoison.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|